Quadratic Functions

A quadratic function is a function whose rule is a second degree polynomial.
The form for this type of function is
$f(x)=a x^{2}+b x+c$ with $a \neq 0$

The graph of such a function is always a parabola.
The direction, up or down of the parabola is determined by a.
If $a>0$ then the parabola has a minimum at its vertex and it goes up.
If $a<0$ then the parabola has a maximum at its vertex and it goes down.
The easiest way to graph a quadratic function is to put it into the standard form
$y-k=a(x-h)^{2}$

In this form we can see immediately that the vertex is at (h, k).
\wedge
The value of a will control the shape.
If $|a|>1$ the limbs of the parabola will be steeper than $y=x^{2}$

Graphing a Quadratic

To put a quadratic into standard form we need to complete the square:

Example:
$f(x)=2 x^{2}-12 x+13$

First Factor out a value:
$y=2\left(x^{2}-6 x+\frac{13}{2}\right)$
The value to complete the square is $\left(\frac{b}{2}\right)^{2}=9$
So we have
$y+18=2\left(x^{2}-6 x+9\right)+13$
$y+18=2(x-3)^{2}+13$
$y+5=2(x-3)^{2}$
$y-{ }^{-5}=2(x-3)^{2}$

From this we see that the vertex is at $(3,-5)$, the parabola goes up and it goes up twice as fast as x^{2}

Before we graph this we can see if it has any zeros using the quadratic formula
$x=\frac{12 \pm \sqrt{144-104}}{4}=\frac{12 \pm 2 \sqrt{10}}{4}=3 \pm \frac{\sqrt{10}}{2} \approx 1.4,4.6$
which can help in graphing.

Note that he minimum is at 3 and has value -5

Finding the Min/Max Algebraically

We can find the Min/Max more generally as follows:
$y=a x^{2}+b x+c$
$y-c=a\left(x^{2}+\frac{b}{a} x\right)$
$y-c+a\left(\frac{b}{2 a}\right)^{2}=a\left(x^{2}+\frac{b}{a} x+\left(\frac{b}{2 a}\right)^{2}\right)$
$y-c+a\left(\frac{b}{2 a}\right)^{2}=a\left(x+\frac{b}{2 a}\right)^{2}$
$y-\left(\frac{4 a c-b^{2}}{4 a}\right)=a\left(x+\frac{b}{2 a}\right)^{2}$

From this we can see that the min/max will occur at $x=\frac{-b}{2 a}$
and the value at the min/max will be

$$
\frac{b^{2}-4 a c}{4 a}
$$

It's probably best to just remember $x=\frac{-b}{2 a}$ and plug this value into the function to find the value.

Example:

$$
\begin{aligned}
& f(x)=5 x^{2}-30 x+49 \\
& y-49=5\left(x^{2}-6 x\right) \\
& y-49+45=5\left(x^{2}-6 x+9\right) \\
& y-4=5(x-3)^{2}
\end{aligned}
$$

So the vertex is at $(3,4)$
Since $5>0$, this parabola has a minimum value $y=4$.

